martedì, Aprile 16, 2024

Proteasome anchors to neuronal membranes to become a signaling platform: moonlightner or hidden deceiver?

Within the nervous system, the proteasome system (PROS) has...

Intelligenza Artificiale al servizio dell’oncologia (II): adesso è il turno dei tumori cerebrali

Introduzione I tumori al cervello, sebbene rari, rappresentano una sfida...

Danno renale: modulare il metabolismo per stimolare l’auto-riparo

I reni filtrano i rifiuti e il fluido in eccesso dal sangue, espellendo le molecole non sicure nelle urine. Quando i reni sono feriti o falliscono, i rifiuti si accumulano, potenzialmente con conseguente morte. Trenta milioni di persone negli Stati Uniti (il 15% della popolazione adulta) hanno una malattia renale. Le cause includono condizioni mediche come l’ipertensione e il diabete, così come la chemioterapia e i coloranti usati nella cateterizzazione cardiaca. Un team di ricercatori guidati da Jonathan Stamler, MD, della Case Western Reserve University School of Medicine e degli ospedali universitari Cleveland Medical Center, ha scoperto un percorso per migliorare gli sforzi di autoriparazione dei reni lesionati. La scoperta potrebbe aprire la strada a nuovi farmaci per fermare o addirittura invertire la progressione della grave malattia renale negli esseri umani – e altre condizioni potenzialmente letali del cuore, del fegato e del cervello. Il percorso appena scoperto implica la riprogrammazione del metabolismo del corpo al fine di salvare i reni danneggiati. Normalmente, un processo chiamato glicolisi converte il glucosio dal cibo in energia, necessario affinché la vita continui.

Ma la nuova scoperta mostra che quando il tessuto viene ferito, il corpo può passare il processo a una delle cellule danneggiate. Fino ad ora, i meccanismi attraverso i quali il corpo cambia tra generazione di energia cellulare (per prestazioni massime) e riparazione (in danno) sono stati capiti male. Inoltre, raramente il corpo massimizza il potenziale di riparazione, di solito favorendo la produzione di energia. Nelle nuove scoperte, pubblicate nel numero del 29 novembre di Nature, il team scientifico ha scoperto come intensificare il processo di commutazione, determinando una cascata di molecole di riparazione dei tessuti che hanno fermato con successo la progressione della malattia renale nei topi. “Quando ferito, il corpo rallenta l’uso di zucchero per l’energia, usandolo invece per la riparazione”, ha detto Stamler. “Dimostriamo di poter controllare e amplificare questo processo allontanando il glucosio dalla generazione di energia in percorsi che proteggono e riparano le cellule, dando un sollevamento e spinta alla propria auto-guarigione migliorando la durata della vita degli animali feriti. Pensiamo ad un progetto per nuove linee di terapia futura contro il tessuto renale danneggiato”.

Normalmente, quando le cellule scompongono il grasso, gli zuccheri e le proteine in glucosio, le tre sostanze vengono trasformate in prodotti intermedi che si muovono nei mitocondri, la centrale elettrica delle cellule, fornendo combustibile per la vita. Il team di Stamler riferisce che le cose funzionano in modo molto diverso nei tessuti feriti: nei reni, per esempio, il corpo innesca un “Piano B”, convertendo il glucosio in nuove molecole che eseguono invece la riparazione cellulare. Stamler e colleghi hanno scoperto che un enzima chiamato PKM2 controlla se il carburante (glucosio) viene utilizzato per alimentare la cellula o passare alla modalità di riparazione. Disabilitare PKM2 ha comportato un aumento significativo della riparazione cellulare e una concomitante diminuzione della generazione di energia. “Dopo un infortunio o una malattia, il corpo tenta di disabilitare la proteina PKM2 per deviare il glucosio in modalità di recupero. Nella nostra ricerca, abbiamo amplificato la sua inibizione. Questo ha portato a una significativa protezione contro le lesioni renali nei topi”. Una molecola chiave identificata nel processo è l’ossido nitrico (*NO). Era già noto che *NO protegge i reni e altri tessuti. NO è il principio attivo della nitroglicerina usato per trattare la malattia cardiaca, quindi si è ipotizzato che l’NO funzionasse dilatando i vasi sanguigni.

Ma il gruppo di ricerca ha scoperto che *NO attaccato a una molecola critica chiamata Coenzima A – noto come metabolita della produzione di energia – lega la glicolisi alla produzione di energia. Il coenzima A si lega e trasporta l’NO in molte proteine ​​diverse, incluso il PKM2, “spegnendole”. Questo determina se le cellule renali stanno utilizzando i loro percorsi per l’energia o la riparazione. Oltre a scoprire che l’aggiunta di *NO a PKM2 attiva la riparazione, il team di Stamler ha scoperto che una proteina chiamata AKR1A1 rimuove successivamente l’NO dal PKM2, riattivando un robusto processo di generazione di energia. Questa inversione, completata la guarigione, consente di convertire efficientemente il glucosio in carburante. “Questo aiuta a spiegare perché la gente recupera la capacità di fare attività faticose dopo il recupero da una ferita o una malattia”, ha detto Stamler. Quando il team di ricerca ha disattivato AKR1A1, i reni sono rimasti in modalità di riparazione ed erano altamente protetti dalle malattie. Pertanto, l’obiettivo del team è sviluppare farmaci per inibire PKM2 o AKR1A1.

Ciò potrebbe aprire nuove possibilità di guarigione per milioni di persone in tutto il mondo che soffrono di numerose condizioni, tra cui malattie cardiache, ictus, traumi cerebrali e malattie renali.

  • A cura del Dr. Gianfrancesco Cormaci, PhD, specialista in Biochimica Clinica.

Pubblicazioni scientifiche

Zhou HL et al., Stamler JS. Nature. 2018 Nov 28.

Pozzoli S et al. Journal of Nephrology 2017; 31(2):209.

Cheon JH et al. Toxicol Res. 2016 Jan; 32(1):47-56.

Latest

Proteasome anchors to neuronal membranes to become a signaling platform: moonlightner or hidden deceiver?

Within the nervous system, the proteasome system (PROS) has...

Intelligenza Artificiale al servizio dell’oncologia (II): adesso è il turno dei tumori cerebrali

Introduzione I tumori al cervello, sebbene rari, rappresentano una sfida...

Le Cucurbitacee: una vasta famiglia di frutti e verdure con straordinarie proprietà per la salute

Le piante della famiglia delle Cucurbitacee, come zucca, zucchino,...

Newsletter

Don't miss

Proteasome anchors to neuronal membranes to become a signaling platform: moonlightner or hidden deceiver?

Within the nervous system, the proteasome system (PROS) has...

Intelligenza Artificiale al servizio dell’oncologia (II): adesso è il turno dei tumori cerebrali

Introduzione I tumori al cervello, sebbene rari, rappresentano una sfida...

Le Cucurbitacee: una vasta famiglia di frutti e verdure con straordinarie proprietà per la salute

Le piante della famiglia delle Cucurbitacee, come zucca, zucchino,...

Geraniolo: l’alcol di molti aromi naturali e la sua azione protettiva contro la demenza senile

Nonostante le malattie cardiovascolari, il diabete e i tumori...
Dott. Gianfrancesco Cormaci
Dott. Gianfrancesco Cormaci
Laurea in Medicina e Chirurgia nel 1998, specialista in Biochimica Clinica dal 2002, ha conseguito dottorato in Neurobiologia nel 2006. Ex-ricercatore, ha trascorso 5 anni negli USA alle dipendenze dell' NIH/NIDA e poi della Johns Hopkins University. Guardia medica presso la casa di Cura Sant'Agata a Catania. In libera professione, si occupa di Medicina Preventiva personalizzata e intolleranze alimentari. Detentore di un brevetto per la fabbricazione di sfarinati gluten-free a partire da regolare farina di grano. Responsabile della sezione R&D della CoFood s.r.l. per la ricerca e sviluppo di nuovi prodotti alimentari, inclusi quelli a fini medici speciali.

Gimme five: MER approach uncover new proteins for breast cancer. Markers or targets?

Although breast cancer is the most prevalent type of cancer affecting women across the world and is associated with substantial morbidity and a significant...

Myelofibrosis: vitamin D does not help the marrow at all

There are three types of blood cell: white blood cells, red blood cells  and platelets. All three types are created from hematopoietic stem cells...

ONC201: il primo farmaco epigenetico per quei dannati tumori cerebrali ancora letali

I gliomi diffusi della linea mediana, incluso il glioma pontino intrinseco diffuso (DIPG) con una mutazione chiamata H3K27M, sono tumori cerebrali particolarmente aggressivi, con...