Home ENGLISH MAGAZINE Gut bacteria and food allergy: for health, they also say "united we...

Gut bacteria and food allergy: for health, they also say “united we stand”

For reasons that remain a mystery, the number of Americans who suffer from food allergy has risen sharply over the last decade to as many 32 million, according to one recent estimate. Nearly 8 percent of children in the U.S. — about two in every classroom — are affected. One hypothesis is that certain Western lifestyle factors — an increase in births by Caesarean section, a decline in breastfeeding, increased use of antibiotics and smaller family sizes, for example — is disrupting the normal microbial balance in the gut, depriving babies of the “good” bacteria that prepare the immune system to recognize food as harmless. A study by scientists at Boston Children’s Hospital and Brigham and Women’s Hospital, published today in Nature Medicine, claims to have an answer, that the national epidemic of food allergy is caused by the absence of certain beneficial bacteria in the human gut. But the study, conducted primarily in mice, also points the way toward treatments that may protect children from developing food allergies — and reverse the disease in people who already have it. In other words, the loss of these bacteria acts as a switch that makes children susceptible to food allergy.

The team began testing this hypothesis by studying gut bacteria in babies with and without food allergies. They collected stool samples from 56 food-allergic patients and 98 matched controls. Then they analyzed those samples for changes in bacterial content. The work revealed that the bacteria in the feces of babies with food allergies were different from those of controls. But did those bacterial differences play a role in their food allergies? To find out, the team transplanted fecal bacteria from the babies into a special strain of allergy-prone mice. They fed the mice small doses of chicken egg protein to sensitize their immune systems to this allergen, then challenged the mice with a large dose. What they found is that mice that had been given fecal bacteria from food-allergic babies went into the life-threatening reaction called anaphylaxis; that is, fhe fecal bacteria from food-allergic subjects did not protect against food allergy, whereas the bacteria from control subjects did. To find out which bacteria might be offering that protection, the team turned to collegues at Brigham and Women’s Hospital. They provided a mix of six bacterial species from the order Clostridiales, which previous studies had suggested might protect against food allergy. When these bacteria were given to the mice, the animals were protected from food allergy to chicken egg protein, whereas mice given other common bacteria were not. Then they provided a second mix of unrelated bacteria from the order Bacteroidales. It too was protective. And finally, when the team treated mice that already had food allergy with the Clostridiales or Bacteroidales mixes, they found those therapies completely suppressed the animals’ allergic reactions.

Dr. Tatal Chatila, senior author and head researcher, explained and commented: “Our data prove that the loss of protective gut bacteria is a critical factor in food allergy. If you give them the right bacteria, the Clostridia, they’re completely resistant to food allergy. At the very least it is a fundamental mechanism. And more likely, in my mind, it is the fundamental mechanism on which other things can be layered While previous studies have suggested that certain bacteria can protect against food allergies, we went a step further, describing the specific immunological pathway by which the bacteria act in mice. It begins with a protein, known as MyD88, that serves as a “microbial sensor” in the immune system’s regulatory T cells. You need the bacteria to give particular signals that are picked up by nascent regulatory T cells in the gut. Those signals trigger a chain reaction that changes the gut regulatory T cells into a specific type, known as ROR-gamma regulatory T cells, that protect against food allergies. As a result of this work, we now have a fundamental concept of how food allergy happens,  a theory we hope other scientists will now test”.

The team believes their findings will eventually lead to new treatments that prevent the development of food allergies in newborns at risk. The treatments might take the form of probiotics — mixes of beneficial bacteria — or drugs that prime the immune system in the same way. And for the millions who already suffer from food allergies, the same treatments may be able to reverse their disease. “Indeed,” Chatila says, “in adult mice that had become food-allergic, we could suppress their disease by introducing the good bacteria, which means to us there is the potential to treat with established food allergy and reset their immune system in favor of tolerance. Ultimately, these promising results in mice will have to be duplicated in humans. But that may happen soon. Dr. Rachid is already conducting a first-of-its-kind clinical trial at Boston Children’s, to test the safety and efficacy of fecal transplants in adults with peanut allergy. Moreover, several companies are already preparing bacterial mixes for clinical trials. If the race continues with the same intensity, or accelerates, I think you’ll see a product on the market within five years”.

  • Edited  by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Abdel-Gadir A et al., Rachid R, Chatila TA. Nat Med. 2019 Jun 24. 

Biswas A et al., Snapper SB. Nat Commun. 2018 May 3; 9(1):1779. 

Nowak-Wegrzyn A et al. Nat Rev Gastroenterol Hepatol. 2017 Apr.

Dott. Gianfrancesco Cormaci
- Laurea in Medicina e Chirurgia nel 1998 (MD Degree in 1998) - Specialista in Biochimica Clinica nel 2002 (Clinical Biochemistry residency in 2002) - Dottorato in Neurobiologia nel 2006 (Neurobiology PhD in 2006) - Ha soggiornato negli Stati Uniti, Baltimora (MD) come ricercatore alle dipendenze del National Institute on Drug Abuse (NIDA/NIH) e poi alla Johns Hopkins University, dal 2004 al 2008. - Dal 2009 si occupa di Medicina personalizzata. - Guardia medica presso strutture private dal 2010 - Detentore di un brevetto sulla preparazione di prodotti gluten-free a partire da regolare farina di frumento immunologicamente neutralizzata (owner of a patent concerning the production of bakery gluten-free products, starting from regular wheat flour). - Responsabile del reparto Ricerca e Sviluppo per la società CoFood s.r.l. (leader of the R&D for the partnership CoFood s.r.l.) - Autore di un libro riguardante la salute e l'alimentazione, con approfondimenti su come questa condizioni tutti i sistemi corporei. - Autore di articoli su informazione medica, salute e benessere sui siti web salutesicilia.com e medicomunicare.it