Green tea: the light, ancient, healthy drink now as possibility against TBC

An antioxidant found in the green tea plant could become key to tackling tuberculosis one day, a team of international scientists led by Nanyang Technological University, Singapore (NTU Singapore) has found. Through laboratory investigations, the team led by NTU Professor Gerhard Grüber discovered how the prominent compound, known as epigallocatechin gallate (EGCG), can inhibit the growth of a tuberculosis-causing bacteria strain. The EGCG does so by binding to an enzyme that provides biological energy for cellular activity. The process results in a dip in the amount of energy the bacteria has for its cellular processes vital for growth and stability, such as cell wall formation. The team, which includes NTU Associate Professor Roderick Bates, National University of Singapore (NUS) Professor Thomas Dick, and collaborators from the US and New Zealand, also identified the exact sites on the enzyme at which the EGCG needs to bind to in order to affect energy production in the bacterial cell. The team is part of TOPNet, a consortium of experts from NTU, NUS, and the Agency for Science, Technology and Research focused on creating new, improved treatments for tuberculosis. It is funded by Singapore’s National Research Foundation Competitive Research Programme.

Indeed, studies on green tea and tuberculosis date back to 2008, when a team of scientists tested the effects of pure EGCG and the antibacterial triclosan to target together enoyl-acyl carrier protein (ACP) reductases, a group of enzymes needed for the mycobacterium to synthesize his thick lipid cellular wall. The catechin EGCG interfered with a cofactor needed for the enzyme IhnA and shows synergicstic effect with triclosan, since EGCG increased the inhibitory activity of triclosan towards InhA and vice versa. Back to 2015 another indipendent team of researchers discovered that EGCG was actually effective against Mycobacterium smegmatis: after 18h treatment in vitro, the bacterium lost almost entirely its lipid wall usual structure, becoming thicker but loose. The same year, the team enrolled more than 500 patients with the disease and a coort of matching controls to test if the drinking of green tea was related to tuberculosis prevention. Data showed that tea drinking has a negative association with TB. Drinking black tea, oolong and green tea are all negative association with tuberculosis. Though more clinical data are needed, this is a promising approach to naturally attack mycobacteria.

These findings could pave the way for the creation of novel drugs to combat tuberculosis, one of the most ancient yet deadly infectious diseases in the world. Southeast Asia accounts for 41% of the world’s tuberculosis cases, with 4 million new cases every year. While there are already drugs that target Mycobacterium tuberculosis (M. tuberculosis) – the bacteria that causes the airborne disease – new ones are needed because the bacteria is increasingly showing resistance to many of the drugs. Cells require energy for vital processes such as cell wall formation to take place. They get their energy from an energy storage molecule made by an enzyme called ATP synthase. Without energy for essential cellular activity, a cell loses its stability and eventually dies. To determine the factors affecting the production of ATP synthase, and thus the amount of energy a bacterial cell has for growth, the NTU-led team studied Mycobacterium smegmatis and M. bovis, both of which share a similar structural composition as M. tuberculosis. The team first found that alterations to the genetic code for ATP synthase resulted in an enzyme that produced fewer ATP molecules in the bacterial cells, slower cell growth and an altered colony shape.

With this data, the scientists then screened for and found 20 compounds that could possibly bind to ATP synthase and cause the same blocking effect, and then tested them for their efficacy. Only EGCG, a natural antioxidant that occurs in a large amount in green tea, showed it had the same crucial effect of reducing energy storage molecules in the bacterial cell. A patent has been filed for the identification of the EGCG as a possible form of treatment for tuberculosis. The NTU-led team is now looking at optimising the activity of EGCG for increased efficiency and potency in fighting the tuberculosis bacteria. Their ultimate goal is to develop a drug cocktail that will tackle multi-drug resistant tuberculosis. Professor Gerhard Grüber from the NTU School of Biological Sciences said: “Though tuberculosis is curable, the success of current drugs on the market is increasingly being overshadowed by the bacteria’s clinical resistance. Our discovery of the EGCG’s ability to inhibit the growth of M. tuberculosis will allow us to look at how we can improve the potency of this compound in green tea, and other similar compounds, to develop new drugs to tackle this airborne disease”.

The findings were published in the journal Scientific Reports last November.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Khan KS, Hussain A et al. J Pak Med Assoc. 2018 Sep; 68(9):1421. 

Chen M et al., Wen SW. BMC Public Health 2015 May 29; 15:515. 

Sun T, Qin B, Gao M et al. Natur Prod Res. 2015; 29(22):2122-24. 

Sharma SK et al. Biochem Biophys Res Comm. 2008; 368(1):12-17.

Informazioni su Dott. Gianfrancesco Cormaci 1864 Articoli
- Laurea in Medicina e Chirurgia nel 1998 (MD Degree in 1998) - Specialista in Biochimica Clinica nel 2002 (Clinical Biochemistry specialty in 2002) - Dottorato in Neurobiologia nel 2006 (Neurobiology PhD in 2006) - Ha soggiornato negli Stati Uniti, Baltimora (MD) come ricercatore alle dipendenze del National Institute on Drug Abuse (NIDA/NIH) e poi alla Johns Hopkins University, dal 2004 al 2008. - Dal 2009 si occupa di Medicina personalizzata. - Detentore di un brevetto sulla preparazione di prodotti gluten-free a partire da regolare farina di frumento immunologicamente neutralizzata (owner of a patent concerning the production of bakery gluten-free products, starting from regular wheat flour). - Autore di un libro riguardante la salute e l'alimentazione, con approfondimenti su come questa condizioni tutti i sistemi corporei. - Autore di articoli su informazione medica, salute e benessere sui siti web salutesicilia.com e medicomunicare.it