Bitter expectances from sweet “oses”: how to take advantage over a cancer mutation

Like any cells in the body, cancer cells need sugar ­– namely glucose – to fuel cell proliferation and growth. Cancer cells in particular metabolize glucose at a much higher rate than normal cells. However researchers from USC Viterbi’s Mork Family Department of Chemical Engineering and Materials Science have unlocked a weakness in a common type of cancer cell: sugar inflexibility. That is, when cancer cells are exposed to a different type of sugar – galactose – the cells can’t adapt, and will die. The discovery, which could have important implications for new metabolic treatments for cancer, was led by Dongqing Zheng, a PhD student in the lab of Nicholas Graham, assistant professor of chemical engineering and materials science. The research was published in the Journal of Cell Science. The paper describes how oncogenes, the genes that cause cancer, can also lead cancer cells to become inflexible to changes in their sugar supply.

Normally, cells grow by metabolizing glucose, but most normal cells can also grow using galactose. However, the team discovered that cells possessing a common cancer-causing gene named AKT cannot process galactose, and therefore they die when exposed to this type of sugar. Galactose is quite structurally similar to the glucose which helps cancer cells thrive, but that it has some differences. One of its alcoholic group is oriented differently in its structure; and enzyme which use glucose normally cannot accomodate galactose in their active pockets. The team found that exposing cells to galactose forces them to do more oxidative metabolism, where oxygen is used to convert sugars into energy, as opposed to glycolytic metabolism, where energy is derived from glucose. Normal cells can metabolize both glucose and galactose, but cancer cells that with an activated AKT signaling pathway, commonly found in breast cancer cells, cannot.

Dr. Graham explained: “We hadn’t seen research looking at galactose in a cancer context, to see whether specific mutations can cause cancer cause cells to be better or worse at managing that switch between glycolytic and oxidative metabolism, The discovery did not mean that galactose itself would be an effective treatment for cancer cells harboring a mutation on c-Akt gene, but that it did uncover a fundamental flaw in these cells, whereby the oxidative state leads to cell death. What we’re trying to do is to use a systems approach to understand this, so we can use some type of targeted drug or gene therapy that can induce a similar effect and force the cell into this oxidative state. Galactose is a model system that we’re using to uncover these vulnerabilities in cells that would then lead to future drug development, since galactose itself is poorly suitable as a treatment. Our lab will focus on trying to use drugs specifically to do that”.

The team’s findings also showed that while the oxidative process brought on by galactose did result in cell death in AKT-type cancer cells, when the cells were given a different genetic mutation, c-Myc, the galactose did not kill the cells. The researchers also discovered after around 15 days in galactose, some cancer cells started to reoccur. They think that there is a small sub population that are resistant to the galactose. The other possibility is that some cancer cells are very resilient and they adapt and reprogram themselves after two weeks exposed to the galactose treatment.  To identify the mechanisms regulating AKT-mediated cell death, researchers used metabolomics and found that AKT-expressing cells that were dying in galactose culture had an higher glutathione metabolism.  These cells dying in galactose also upregulated nonsense-mediated mRNA decay, a marker of sensitivity to oxidative stress.

Once scientists measured levels of reactive oxygen species (ROS), they discovered that galactose-induced ROS exclusively in cells expressing AKT. Furthermore, ROS were required for galactose-induced death of AKT-expressing cells. The systems biology approach to cancer treatment is different to traditional treatments like chemotherapy and radiation therapy in that it targets metabolic processes in cancer cells. It aims to identify drugs without a lot of the side effects of traditional chemotherapies that also kill healthy cells, leading to adverse effects such as hair loss. However some resurgence is common in a lot of targeted metabolic treatments for cancer, which demonstrate strong initial results before a partial recurrence of the cells. Therefore, cancers with c-Akt mutations can potentially be targeted using a metabolic treatment like this, in order to initially shrink the tumor.

Anyway, there would be needed another treatment in a drug cocktail to prevent recurrence and protect against cancer cells mutating and adapting. Moving forward, the team’s biggest challenge is to figure out which types of combination treatments to apply to test in cancer cells with the AKT gene, to lead to more effective therapeutics.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Zheng D et al. J Cell Sci. 2020 Apr 9; 133(7):jcs239277.

Yang Y, Vankayalapati H et al. Molecules 2020; 25(3):645.

Koundouros N, Poulogiannis G. Front Oncol. 2018; 8:160. 

0 0 vote
Article Rating
Informazioni su Dott. Gianfrancesco Cormaci 2450 Articoli
- Laurea in Medicina e Chirurgia nel 1998 (MD Degree in 1998) - Specialista in Biochimica Clinica nel 2002 (Clinical Biochemistry specialty in 2002) - Dottorato in Neurobiologia nel 2006 (Neurobiology PhD in 2006) - Ha soggiornato negli Stati Uniti, Baltimora (MD) come ricercatore alle dipendenze del National Institute on Drug Abuse (NIDA/NIH) e poi alla Johns Hopkins University, dal 2004 al 2008. - Dal 2009 si occupa di Medicina personalizzata. - Detentore di un brevetto sulla preparazione di prodotti gluten-free a partire da regolare farina di frumento immunologicamente neutralizzata (owner of a patent concerning the production of bakery gluten-free products, starting from regular wheat flour). - Responsabile del reparto Ricerca e Sviluppo per la società CoFood s.r.l. (leader of the R&D for the partnership CoFood s.r.l.) - Autore di un libro riguardante la salute e l'alimentazione, con approfondimenti su come questa condizioni tutti i sistemi corporei. - Autore di articoli su informazione medica, salute e benessere sui siti web salutesicilia.com e medicomunicare.it
Subscribe
Notificami

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

0 Commenti
Inline Feedbacks
View all comments