HomeENGLISH MAGAZINECOVID vaccine side effects: they are all on "nano-reasons"

COVID vaccine side effects: they are all on “nano-reasons”

Lipid nanoparticles (LNPs) are the carrier vehicles that protect messenger RNA (mRNA) molecules from degradation and aid intracellular delivery and endosomal escape in the nucleoside-modified mRNA-LNP vaccine platforms currently used by Pfizer/BioNTech and Moderna, against SARS-CoV-2. These two vaccines surpass the rest with their effective support for follicular T helper cells (Tfh) and the protective humoral responses observed in the preclinical trials. While the vital role of LNPs in these vaccines’ action is established, the potentially inflammatory nature of these LNPs is not assessed. Also, in the Pfizer/BioNTech and Moderna vaccines’ human trials, it is reported that side effects often linked to inflammation, such as pain, swelling, fever, and sleepiness, are common. Because the vaccine was presumed to be non-inflammatory, these side-effects were taken to be generated from the potent immune response to the vaccine. Therefore, there is a need for a systemic approach to analyze the inflammatory properties of LNPs and understand their role in the vaccination process.

Now researchers from Thomas Jefferson University demonstrated the inflammatory nature of the lipid nanoparticles (LNPs). Upon intradermal administration in mice, they observed massive neutrophil infiltration, activation of diverse inflammatory pathways, and production of various inflammatory cytokines and chemokines. They observed similar observations when the LNPs were delivered intranasally. Notably, intranasal inoculation with the same dose (10 μg) of LNP (as in the intradermal delivery) caused a high mortality rate in mice – about 80% of the treated mice died in less than 24 hours. The researchers found that the LNPs’ inflammatory properties are not site-specific. They observed a fast diffusion, dispersion, and distribution rate in the tissues, upon internal delivery. Thus, scientists believe that the inflammatory milieu induced by the LNPs could be partially responsible for reported side effects of mRNA-LNP-based SARS-CoV-2 vaccines in humans, and are possibly contributory to their reported high potency for eliciting protective immunity.

The LNPs consist of a mixture of phospholipids, cholesterol, PEGylated lipids, and cationic or ionizable lipids. These improve structure, stability and support prolonged circulation. It is reported that some LNPs containing ionizable/cationic lipids are highly inflammatory and possibly cytotoxic. A preclinical study showed adjuvant activity of mRNA complexed with LNPs. To avoid activation of innate inflammatory pathways, in the vaccine, the mRNA is nucleoside-modified. In this study, the researchers noted that the inflammatory nature of the LNPs could explain their potent adjuvant activity and their superiority, compared to other adjuvants, in supporting the induction of adaptive immune responses. As expected with the observed side-effects in humans after intramuscular vaccination with the Pfizer/BioNTech or Moderna vaccines the intradermal inoculation of LNPs in mice led to secretion of the pyrogens – IL-1β/IL-6 and macrophage inflammatory protein-α (CCL3) and macrophage inflammatory protein-β (CCL4).

The side effects observed with the SARS-CoV-2 vaccine’s first dose are likely associated with the LNPs’ inflammatory properties. LNPs activate different inflammatory pathways that will lead to the production of inflammatory cytokines, such as IL-1β and IL-6 that can initiate and sustain local and systemic inflammations and side effects. LNPs might also diffuse from the periphery and reach any organs in the body, including CNS (hypothalamus) where they could directly induce side effects (fever). PEG is widely used as a food and medicine additive, and many of us develop antibodies to PEG. Therefore, the LNPs’ PEGylated lipids can induce CARP in humans with preexisting PEG-specific antibodies. Humans often experience more severe side effects with the second dose. Here we posit that might be due to multiple reasons. Firstly, innate immune memory against the LNPs might form after the first vaccination, and that could lead to even more robust inflammatory responses upon the second vaccination.

Secondly, after the first vaccination adaptive immune responses are formed targeting the viral protein coded by the mRNA. As such, cells expressing the viral protein derived peptides or protein itself can become the target of CD8+ T or NK cell-mediated killing, respectively. The researchers conducted Gene Set Enrichment Analysis (GSEA) to understand the pathways involved in the inflammatory cascade with the proprietary LNPs administered. The observed activated  tolerance receptor (TLR) pathways, among others, and upregulated inflammasome components such as NLRP3 and enrichment of genes involved in necroptosis and pyroptosis. The researchers raised a concern that the LNPs, as lipid particles that can diffuse quickly, could potentially gain access to the central nervous system (CNS) through the olfactory bulb or blood. 

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.
The following two tabs change content below.

Dott. Gianfrancesco Cormaci

Medico Chirurgo, Specialista; PhD. a CoFood s.r.l.
- Laurea in Medicina e Chirurgia nel 1998 (MD Degree in 1998) - Specialista in Biochimica Clinica nel 2002 (Clinical Biochemistry residency in 2002) - Dottorato in Neurobiologia nel 2006 (Neurobiology PhD in 2006) - Ha soggiornato negli Stati Uniti, Baltimora (MD) come ricercatore alle dipendenze del National Institute on Drug Abuse (NIDA/NIH) e poi alla Johns Hopkins University, dal 2004 al 2008. - Dal 2009 si occupa di Medicina personalizzata. - Guardia medica presso strutture private dal 2010 - Detentore di due brevetti sulla preparazione di prodotti gluten-free a partire da regolare farina di frumento immunologicamente neutralizzata (owner of patents concerning the production of bakery gluten-free products, starting from regular wheat flour). - Responsabile del reparto Ricerca e Sviluppo per la società CoFood s.r.l. (leader of the R&D for the partnership CoFood s.r.l.) - Autore di un libro riguardante la salute e l'alimentazione, con approfondimenti su come questa condizioni tutti i sistemi corporei. - Autore di articoli su informazione medica e salute sui siti web salutesicilia.com, medicomunicare.it e in lingua inglese sul sito www.medicomunicare.com
- Advertisment -