giovedì, Aprile 18, 2024

Sempre più spazio per la ketamina nel trattamento della depressione resistente: come fa a “resettare” i circuiti?

Background Le stime attuali indicano che oltre 300 milioni di...

Proteasome anchors to neuronal membranes to become a signaling platform: moonlightner or hidden deceiver?

Within the nervous system, the proteasome system (PROS) has...

Intelligenza Artificiale al servizio dell’oncologia (II): adesso è il turno dei tumori cerebrali

Introduzione I tumori al cervello, sebbene rari, rappresentano una sfida...

Can cer-tain enzymes be targeted to suppress metastases? Any epigenetic cascade is NN MT of roles

A cell can be pictured like a social network: in theory, every person is connected to every other person in the world through surprisingly few degrees of separation. Cell factors in molecular networks are connected to each other in an analogous way. If one stops functioning correctly, the system is thrown out of balance. The result is a cascade of effects that can have wide-ranging and unexpected consequences on more distant parts of the network. Deciphering these cascades can contribute to scientists’ understanding of how a minor defect in a cell’s system can lead to diseases like cancer. These insights offer ideas for new treatments. Breast cancer is at center of active research due for its high mortality; when it spreads to other organs usually heralds a poorer prognosis.

Researchers at the University and University Hospital of Basel have discovered a process that helps breast cancer cells implant themselves in certain places in the body. The team led by Professor Mohamed Bentires-Alj worked to establish the role of a cellular enzyme in breast cancer metastasis, by discovering a mechanism that appears to support metastasis in a range of aggressive cancers. The team elucidated one of these cascades. It begins with a metabolic enzyme called nicotinamide N-methyltransferase, or NNMT for short. And it ends with the substance that fills the space between the body’s cells and holds them together: collagen. This proteins is good since it maintains a proper tissue folding. But in the case of metastatic cancer it helps cancer cells embed themselves in new tissues.

“Triple negative” breast cancer, which affects roughly 15 percent of all breast cancer patients, is particularly aggressive because it often spreads throughout the body and forms lung and brain metastases. These breast cancer cells express unusually high amounts of an enzyme called NNMT. As the researchers learned through experiments on animals, overproduction of NNMT is key to the metastasis. Why? The answer is found at the end of the cascade, with collagen. As the Basel research team reports, overproduction of NNMT causes the cancer cells to also produce more collagen than normal. It is known from previous studies that wandering cancer cells first have to find their way around in new tissues. The environment there is different from that of the original tumor.

In this preliminary stage of metastasis, the collagen in the new tissue helps the cancer cells survive and adapt. What the new study found: particularly aggressively metastasizing breast cancer cells not only produce an excessive amount of NNMT, but also their own collagen. When the researchers removed NNMT from aggressive breast cancer cells and injected these cells into mice, the animals developed hardly any metastases and the cells also produced hardly any collagen. Researchers investigated some molecular mechanisms behind this effect. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation and DNA methylation at the promoters of enzyme PRDM5 and extracellular matrix-related genes.

PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Beside, the enzyme NNMT produces more N-methyl-nicotinamide, which intracellularly is a competitive inhibitor of the nuclear family enzymes of poly-ADP-ribose polymerases (PARPs). These enzymes, particularly PARP1 and 2, are actively involved in chromatin remodeling and DNA repair, along with chromatin stability through interaction with partners like the tumor suppressor p53. Other mechanisms could mediate the effect of NNMT as well, as the one recently published in a research showing the participation of the signaling axis PP2A-ERK-AP1-ABCA1. A literature review also found that overproduction of NNMT is typical of a whole range of aggressive cancers.

This means that beside breast cancers, other lethal types like pancreatic, lung or stomach cancer coud take advantage of this discovery. And that NNMT could be deemed as an universal and potential metastasis target to disable.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Couto JP et al. EMBO Journal 2023; Jun 1:e112559.

Huang H et al. Mol Cancer Ther. 2023; 22(3):393-405.

Liu W, Zhu M et al. Dis Markers. 2023; 2023:9226712.

Wang Y, Zhou X et al. Cancer Lett. 2022; 547:215884.



Don't miss

Dott. Gianfrancesco Cormaci
Dott. Gianfrancesco Cormaci
Laurea in Medicina e Chirurgia nel 1998, specialista in Biochimica Clinica dal 2002, ha conseguito dottorato in Neurobiologia nel 2006. Ex-ricercatore, ha trascorso 5 anni negli USA alle dipendenze dell' NIH/NIDA e poi della Johns Hopkins University. Guardia medica presso la casa di Cura Sant'Agata a Catania. In libera professione, si occupa di Medicina Preventiva personalizzata e intolleranze alimentari. Detentore di un brevetto per la fabbricazione di sfarinati gluten-free a partire da regolare farina di grano. Responsabile della sezione R&D della CoFood s.r.l. per la ricerca e sviluppo di nuovi prodotti alimentari, inclusi quelli a fini medici speciali.

Artrite reumatoide: la debolezza muscolare secondaria al danno articolare

L'artrite reumatoide (RA) è una comune malattia infiammatoria autoimmune che porta alla distruzione irreversibile delle articolazioni erosive, alla disabilità e alla qualità della vita...

Bicarbonato: il super-regolatore della milza e dell'(auto?)immunità

Una dose giornaliera di bicarbonato di sodio può aiutare a ridurre l'infiammazione distruttiva delle malattie autoimmuni come l'artrite reumatoide, dicono gli scienziati. Hanno alcune...

Lotta all’influenza: quali sono le prossime frontiere (includendo l’Intelligenza Artificiale)?

Il problema dell'influenza e dello sviluppo dei vaccini I virus dell'influenza hanno una struttura unica. L'emoagglutinina (HA) è una glicoproteina sulla superficie del virus dell'influenza....