HomeENGLISH MAGAZINEOsteoarthritis on the chip: hyaluronate leads to diagnosis

Osteoarthritis on the chip: hyaluronate leads to diagnosis

For the first time, scientists at Wake Forest Baptist Medical Center have been able to measure a specific molecule indicative of osteoarthritis and a number of other inflammatory diseases using a newly developed technology. This preclinical study used a solid-state nanopore sensor as a tool for the analysis of hyaluronic acid (HA). HA is a naturally occurring molecule that is involved in tissue hydration, protection of cartilages from inflammation and joint lubrication in the body. Its abundance and size distribution in biological fluids is recognized as an indicator of inflammation, leading to osteoarthritis and other chronic inflammatory diseases. It can also serve as an indicator of how far the disease has progressed. The study, which is published in the current issue of Nature Communications, was led by Drs. Adam Hall and Elaheh Rahbar of Wake Forest Baptist, and conducted in collaboration with scientists at Cornell University and the University of Oklahoma.

In the study, the team first employed synthetic HA polymers to validate the measurement approach. They then used the platform to determine the size distribution of as little as 10 nanograms of HA extracted from the synovial fluid of a horse model of osteoarthritis. The measurement approach consists of a microchip with a single hole or pore in it that is a few nanometers wide – about 5,000 times smaller than a human hair. This is small enough that only individual molecules can pass through the opening, and as they do, each can be detected and analyzed. By applying the approach to HA molecules, the researchers were able to determine their size one-by-one. HA size distribution changes over time in osteoarthritis, so this technology could help better assess disease progression. The researchers hope to conduct their next study in humans, and then extend the technology with other diseases where HA and similar molecules play a role, including traumatic injuries and cancer.

Lead author Adam R. Hall, PhD, assistant professor of Biomedical engineering at Wake Forest School of Medicine, explained: “The most widely used method is gel electrophoresis, which is slow, messy, semi-quantitative, and requires a lot of starting material. Other technologies include mass spectrometry and size-exclusion chromatography, which are expensive and limited in range, and multi-angle light scattering, which is non-quantitative and has limited precision. By using a minimally invasive procedure to extract a tiny amount of fluid, as example from the knee, we may be able to identify the disease or determine how far it has progressed, which is valuable information for doctors in determining appropriate treatments. Our results established a new, quantitative method for the assessment of a significant molecular biomarker that bridges a gap in the conventional technology. The sensitivity, speed and small sample requirements of this approach, make it attractive as the basis for a powerful analytic tool with distinct advantages over current assessment technologies”.

 

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Quilliot J et al. Semin Arthritis Rheum. 2019 Feb 8.

Rivas F et al., Hall AR. Nat Commun. 2018; 9(1):1037. 

Santer V et al. Dermatol Surg. 2019; 45(1):108-116.

 

 

Dott. Gianfrancesco Cormaci
- Laurea in Medicina e Chirurgia nel 1998 (MD Degree in 1998) - Specialista in Biochimica Clinica nel 2002 (Clinical Biochemistry residency in 2002) - Dottorato in Neurobiologia nel 2006 (Neurobiology PhD in 2006) - Ha soggiornato negli Stati Uniti, Baltimora (MD) come ricercatore alle dipendenze del National Institute on Drug Abuse (NIDA/NIH) e poi alla Johns Hopkins University, dal 2004 al 2008. - Dal 2009 si occupa di Medicina personalizzata. - Guardia medica presso strutture private dal 2010 - Detentore di due brevetti sulla preparazione di prodotti gluten-free a partire da regolare farina di frumento immunologicamente neutralizzata (owner of patents concerning the production of bakery gluten-free products, starting from regular wheat flour). - Responsabile del reparto Ricerca e Sviluppo per la società CoFood s.r.l. (leader of the R&D for the partnership CoFood s.r.l.) - Autore di un libro riguardante la salute e l'alimentazione, con approfondimenti su come questa condizioni tutti i sistemi corporei. - Autore di articoli su informazione medica e salute sui siti web salutesicilia.com, medicomunicare.it e in lingua inglese sul sito www.medicomunicare.com
- Advertisment -
spot_img
spot_img

ARTICOLI PIU' LETTI