lunedì, Maggio 6, 2024

Gut microbiome safely driving by CAR: it does not DIM the lights so there no risk to DIE by LIVEr accidents

The gut microbiome hosts bacteria that produce compounds as...

Fatty traits of behaviors: arachidonic acid and its implication for bipolar disorder

Bipolar disorder is a debilitating mood disorder characterized by...

Atassia spinocerebellare 4/SCA4 rivelata: gli americani identificano il danno molecolare, gli svedesi quello cellulare

La malattia neurologica progressiva nota come atassia spinocerebellare 4...

Communications restored: SMA therapy through a protein that enSNAREs two types of cells

Columbia researchers have discovered how a genetic defect leads to spinal muscular atrophy (SMA), a critical piece of information about the disease that neurologists have been seeking for decades. The discovery suggests a new way to treat SMA, a devastating childhood motor neuron disease that affects 1 in 6,000 children. In the most severe cases, and when left untreated, children born with SMA die within the first two years of life. The researchers also used their finding to develop an experimental therapy that improved survival in mice with severe SMA by 30-fold, one of the greatest increases seen with any treatment in mouse models of SMA. Almost all cases of SMA are caused by a mutation in a single gene SMN1 (survival motor neuron 1) that reduces the amount of SMN protein inside motor neurons. SMN protein deficiency harms the neurons, and eventually the neurons can no longer control the body’s muscles.

SMA has no cure but is commonly treated with therapies that increase SMN production, including a gene therapy that inserts a new SMN gene into the motor neurons. Now researcher at Columbia University Vagelos College of Physicians and Surgeons, in the search for a different kind of treatment, looked at mice with SMA and tried to uncover how SMN deficiency harms neurons (something that’s remained hidden from investigators for decades) so they could find a way to prevent the harm. The researchers found that SMN deficiency usually harms neurons by impairing a different protein, Hspa8, that helps assemble a critical communication link between motor neurons and muscle cells. This happensa throught synaptic complex of proteins called SNARE. With Hspa8 out of action, the communication links are never built and messages cannot be sent from the neuron to the muscle.

Muscles cannot contract without receiving these messages and they eventually waste away. But some mice with SMA, the team noticed, were stronger and less affected by the disease. These mice, the researchers learned, harbored a specific variant of the Hspa8 gene that was not impaired by SMN deficiency. Using an approach that converted Hspa8 into its variant form, the researchers found significant recovery of neuromuscular function and survival in mice with severe SMA. The treated mice survived roughly 300 days, compared to just 10 days for untreated mice, something never seen before, even when treated with nusinersen, a current SMA treatment. Further study is needed to determine how best to translate the findings into a new SMA treatment. A treatment that mimics the protective effect of the Hspa8 variant could have a potent effect in people, if the researchers’ mouse experiments are any indication.

Scientists deem that the easiest way would be to encapsulate the HSPA8 variant in a virus and deliver the gene therapy to patients, as it was done with the mice. Another possibility is to develop small molecules to convert normal Hspa8 into the variant. The researchers are currently working to develop therapies that are suitable for testing in patients.

  • Edited by Dr. Gianfrancesco Cormaci, PhD, specialist in Clinical Biochemistry.

Scientific references

Kim JK et al. Neuron 2023 Feb 22 in press.

Kumar R et al. IBRO Neurosci Rep 2021; 12:25-44.

Kim JK et al. J Clin Invest. 2020; 130(3):1271.

Kim JK, Monani UR. Neuron 2018; 97(5):1001.

Latest

Fatty traits of behaviors: arachidonic acid and its implication for bipolar disorder

Bipolar disorder is a debilitating mood disorder characterized by...

Newsletter

Don't miss

Dott. Gianfrancesco Cormaci
Dott. Gianfrancesco Cormaci
Laurea in Medicina e Chirurgia nel 1998, specialista in Biochimica Clinica dal 2002, ha conseguito dottorato in Neurobiologia nel 2006. Ex-ricercatore, ha trascorso 5 anni negli USA alle dipendenze dell' NIH/NIDA e poi della Johns Hopkins University. Guardia medica presso la casa di Cura Sant'Agata a Catania. In libera professione, si occupa di Medicina Preventiva personalizzata e intolleranze alimentari. Detentore di un brevetto per la fabbricazione di sfarinati gluten-free a partire da regolare farina di grano. Responsabile della sezione R&D della CoFood s.r.l. per la ricerca e sviluppo di nuovi prodotti alimentari, inclusi quelli a fini medici speciali.

Cereali integrali: a parte le fibre, gli effetti benefici dipendono da altro

Gli scienziati hanno scoperto nuovi composti che possono spiegare gli benefici per la salute dei cereali integrali, riporta un nuovo studio condotto dall'Università della...

Globuli rossi: gli spettatori innocenti dei pasti grassi

Tutti sono familiari con qualche abbuffata di roba appetitosa, anche se non estremamente salutare, come patatine fritte, arrosti di carne, formaggi stagionati e simili....

Gingko extract: a new and revalued hope for stroke?

Chronic cerebrovasculopathy is a disabling condition that is increasingly spreading among adults and the elderly. It is the general consequence of cardiovascular disease, often...

Questo si chiuderà in 20 secondi